

European Journal of Cancer 41 (2005) 2819-2827

European Journal of Cancer

www.ejconline.com

# Placenta growth factor is over-expressed and has prognostic value in human breast cancer

Christian Parr a,\*, Gareth Watkins a, Mike Boulton b, Jun Cai b, Wen G. Jiang a

<sup>a</sup> Metastasis and Angiogenesis Research Group, Department of Surgery, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK

Received 11 March 2005; received in revised form 19 July 2005; accepted 28 July 2005 Available online 4 November 2005

#### Abstract

Placenta growth factor (PIGF) belongs to the vascular endothelial growth factor (VEGF) family, a group of angiogenic factors that are crucial for tumour angiogenesis. Very little is known about the significance of PIGF in human cancer. We hypothesise that PIGF may have a potent influence in breast cancer. This study examined PIGF levels in human breast cancer in relation to patient's clinical parameters. PIGF expression and distribution was examined quantitatively using real-time quantitative polymerase chain reaction (Q-PCR) on a cohort of human breast cancer tissue (n = 119) and background breast tissue (n = 33), qualitatively using reverse transcriptase polymerase chain reaction (RT-PCR) on a range of cell lines, and immunohistochemically on patient samples. All these techniques revealed that PIGF expression was dramatically increased (P = 0.028) in breast cancer tissues compared with normal breast tissue. We demonstrate that PIGF displays prognostic value through analysis of patient survival status (6-year follow-up), as elevated levels of PIGF were significantly associated (P = 0.017) with recurrence, metastasis and patient mortality. Our study has shown that PIGF is over-expressed in breast cancer tissues and correlates with patient prognosis, and is likely to play a major role in the pathogenesis of tumours.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Placenta growth factor; Vascular endothelial growth factor; Vascular endothelial growth factor receptor-1; Angiogenesis; Breast cancer; Prognosis; Real-time quantitative polymerase chain reaction; Immunohistochemistry

### 1. Introduction

Angiogenesis is an essential component of tumour development [1] and is tightly regulated by a network of pro-angiogenic and anti-angiogenic factors [2]. The tumour itself is known to produce many of the proteins that drive the angiogenic process. Of the known angiogenic factors, vascular endothelial growth factor (VEGF) has been established as a potent inducer of tumour angiogenesis that can activate both endothelial cell

E-mail address: parrc@cf.ac.uk (C. Parr).

proliferation and migration [3,4]. VEGF has been shown to exert a pro-angiogenic influence in a variety of human tumours [5–8], and has been shown to act as an independent prognostic indicator for breast cancer patients [9,10]. Placenta growth factor (PlGF) belongs to the VEGF family and was originally identified from a term placenta cDNA library as a factor related to VEGF, with the ability to promote endothelial cell proliferation [11].

Presently, the biological role and signalling mechanisms mediating the cellular actions of PIGF remain poorly understood. VEGF is able to interact and induce signalling events through both the VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1) receptors, whereas PIGF only

b Cell and Molecular Biology Unit, School of Optometry and Vision Sciences, Redwood Building, King Edward VII Ave., Cardiff University, Cardiff, CF10 3NB, UK

 $<sup>^{*}</sup>$  Corresponding author. Tel.: +44 29 2074 8394; fax: +44 29 2076 1623.

possesses the ability to bind to VEGFR-1 [12]. However, a recent study demonstrated that activation of VEGFR-1, by PlGF, also led to the intermolecular transphosphorylation of VEGFR-2 [13]. Importantly, PlGF-mediated responses via VEGFR-1 differed from VEGF-driven events, as PlGF uniquely stimulated the phosphorylation of specific VEGFR-1 tyrosine residues and expression of distinct downstream target genes [13]. Carmeliet and colleagues [14] and Luttun and colleagues [15] highlight the important role played by PlGF and VEGFR-1 in inducing the angiogenic switch in pathological conditions.

PIGF is not produced by the majority of normal human tissues [12]. However, PIGF can be found expressed in vascular endothelium, umbilical vein endothelial cells, trophoblasts, the eye, uterine natural killer cells and dentine matrix [16–21]. Studies on cancer cell lines and tumour tissues so far indicate that PIGF expression was upregulated in human gastric adenocarcinoma, renal cell cancer, melanoma, cervical squamous cell carcinoma and meningiomas, whereas PIGF was found to be downregulated in thyroid carcinoma and cervical adenocarcinoma [22–29].

To clarify the role of PIGF in human cancer, we examined the expression of PIGF, through real-time quantitative polymerase chain reaction (Q-PCR) and immunohistochemical studies, in a cohort of human breast cancer specimens. The degree to which PIGF was expressed in these breast tissues may correlate with clinical parameters and the prognosis of patients with breast cancer.

### 2. Materials and methods

# 2.1. Cell lines and culture

All cell lines used in this study were obtained from the European Collection for Animal Cell Culture (ECACC, Porton Down, Salisbury, United Kingdom (UK)) apart from the human prostate cancer cell lines that were purchased from the American Type Culture Collection (ATCC, Rockville, Maryland, United States of America (USA)).

This study used human prostate cancer cells (DU-145, PC-3, CA-HPV-10), human breast cancer cells (MDA-MB-157, MDA-MB-231, MDA-MB-435S, MDA-MB-436, MDA-MB-453, MCF7, BT474, BT549, ZR-75-1), human colorectal cancer cells (HRT-18, HT-115), human pancreatic cancer cells (MIA PACA-2), human bladder cancer cells (EJ-138, T-24), human melanoma cells (G-361), human lung carcinoma cells (A-549), human hepatocellular carcinoma cells (PLC-PRF-5), human fibroblast cells (MRC-5, human fibroblasts), a human epithelial cell line (ECV-304) and a human endothelial cell line (HECV).

Cells were routinely cultured with Dulbecco's modified Eagle medium (DMEM) supplemented with 10% foetal calf serum, penicillin and streptomycin (Gibco BRC, Paisley, UK).

### 2.2. Human breast specimens

A total of 152 breast samples were obtained from breast cancer patients (33 background normal breast tissue and 119 breast cancer tissue). These tissues were collected immediately after mastectomies, and snap-frozen in liquid nitrogen. Background normal mammary tissues were removed from the same patients. The pathologist verified normal background and cancer specimens, and it was confirmed that the background samples were free from tumour deposits. For patient clinical data see Table 1.

## 2.3. Preparation of total cellular RNA

Total cellular RNA was isolated from the homogenised breast samples and human cell lines using the AB Gene Total RNA Isolation Reagent (Advanced Biotechnologies Ltd, Epsom, Surrey, UK). The concentration of RNA was determined through spectrophotometric measurement (WPA UV 1101, Biotech Photometer, Cambridge, UK).

Table 1 Breast cancer patient clinical data details

| Clinical data               | Grouping       | Sample number |
|-----------------------------|----------------|---------------|
| Tissue sample               | Background     | 33            |
|                             | Tumour         | 119           |
| Nottingham prognostic index | 1              | 67            |
|                             | 2              | 37            |
|                             | 3              | 15            |
| Tumour grade                | 1              | 23            |
|                             | 2              | 41            |
|                             | 3              | 55            |
| Tumour node metastasis      | 1              | 68            |
|                             | 2              | 39            |
|                             | 3              | 8             |
|                             | 4              | 4             |
| Survival status             | Good prognosis | 89            |
|                             | Poor prognosis | 30            |
| Histological sub-types      | Ductal         | 93            |
|                             | Lobular        | 13            |
|                             | Muscinous      | 2             |
|                             | Medullary      | 2             |
|                             | Tubular        | 2             |
|                             | Others         | 7             |
| ER status                   | Negative       | 71            |
|                             | Positive       | 48            |

# 2.4. Reverse transcription polymerase chain reaction (RT-PCR)

cDNA was prepared using 0.5 µg of the RNA sample and a reverse transcription kit (Sigma, Poole, Dorset, UK). The quality of DNA was verified using  $\beta$ -actin. β-actin forward and reverse primers were 5'-ATGA-TATCGCCGCGCTCGTC-3' and 5'-CGCTCGGT-GAGGATCTTCA-3', respectively, and gave products approximately 0.58 kb. PIGF forward and reverse primers were 5'-GGAGCTGACGTTCTCAG -3' and 5'-ACTGAACCTGACCGTACAGTTACCTCCGG-GGAACAG-3'. PCR was performed in a GeneAmp PCR system 2400 thermocycler (Perkin-Elmer, Norwalk CT, USA). Conditions for PCR were 40 s at 94 °C, 60 s at 55 °C, 60 s at 72 °C (30 cycles). PCR products were loaded onto a 2% agarose gel and electrophoretically separated. The gel was then visualised under ultraviolet light following ethidium bromide staining.

### 2.5. Real-time quantitative polymerase chain reaction

The iCycler IQ system (BioRad, Camberley, UK) was employed [30,31], to quantify the level (shown as copies/ µl from internal standard) of PIGF in the breast specimens. Breast cDNA samples were then examined for PIGF expression using the primers described above, along with a set of standards and negative controls. The Q-PCR technique utilised the Amplifluor system (Intergen Inc, UK) and real-time quantitative polymerase chain reaction (Q-PCR) master mix (ABgene, Surrey, UK), in conjunction with a universal probe (UniPrimerTM). Real-time Q-PCR conditions were 95 °C for 12 min, followed by 65 cycles at 95 °C for 15 s, 55 °C for 60 s and 72 °C for 20 s. The results of the test molecules were normalised against levels of βactin, using a β-actin quantitation kit from Perkin–Elmers (Perkin-Elmers, Surrey, UK). The epithelial content within the tumours was taken into account by normalising PIGF against cytokeratin19. CK19 forward and reverse primers were 5'-CAGGTCCGAGGT-TACTGAC-3' and 5'-ACTGAACCTGACCGTACAC-ACTTTCTGCCAGTGTGTCTTC-3′, respectively.

# 2.6. Immunohistochemical staining of breast specimens

Frozen sections of breast tumour and background tissue were cut at a thickness of 6 µm using a cryostat. The sections were mounted on super frost plus microscope slides, air-dried and then fixed in a mixture of 50% acetone and 50% methanol. The sections were then placed in Optimax wash buffer (Menerium, Oxford, UK) for 5–10 min to rehydrate. Sections were incubated for 20 min in a 0.6% bovine serum albumen (BSA) blocking solution and probed with PIGF antibody, and without primary antibody as a negative control. Antibody to

the PIGF epitope mapped to the C-terminus of human PIGF, and was purchased from Santa-Cruz Biotechnologies Inc. (Santa-Cruz, CA, USA). Following extensive washings, sections were incubated for 30 min in the secondary biotinylated antibody (Multilink Swine antigoat/mouse/rabbit immunoglobulin, Dako Inc., Glostrup, Denmark). Following washings, the Avidin Biotin Complex (Vector Laboratories, Peterborough, UK) was then applied to the sections, followed by extensive washing steps. Diamino-benzidine chromogen (Vector Labs, Peterborough, UK) was then added to the sections, and incubated in the dark for 5 min. Sections were then counter stained in Gill's haematoxylin and dehydrated in ascending grades of methanol before clearing in xylene and mounting under a cover slip (staining was independently assessed by the authors).

### 2.7. Wounding/migration assay

The migration of transformed human endothelial cells (HECV) cells across a wounded surface was examined under different treatment combinations, and has been described in a previous study [32]. Cells at a density of 50000/well were seeded into a 24-well plate and allowed to reach confluence. The layer of cells was then scraped with a fine gauge needle to create a wound of approximately 200 µm. Treatments consisted of recombinant human PIGF (30 ng/ml) (R&D systems, Abingdon, UK), or a combination of recombinant PIGF and anti-VEGFR-1 (120 ng/ml) (Santa Cruz, CA, USA). For details of treatment concentrations and ratios see previous studies [33]. The movement of cells to close the wound was recorded and analysed as described previously using a time-lapsed video system [32]. After the addition of a treatment, the cells motile qualities were monitored and recorded on video for 100 min. Wound closure/cell migration was evaluated with motion analysis software (Optimus 6) and results were exported to a spreadsheet (Excel) for further evaluation interpretation.

### 2.8. Growth assay

HECV were seeded in a 96-well plate at a density of 7000 cells/well, and allowed to adhere overnight. Following this incubation period, the treatments of PIGF (30 ng/ml) and a combination of PIGF and anti-VEGFR-1 (120 ng/ml) were added and incubated at 37 °C for 72 h. A solution of 3-[4,5-dimethylthia-zol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was added to the cells (200  $\mu$ g/well) and incubated for 4 h at 37 °C, then the cells were lysed with Triton (10%) and the intensity of the colour released was determined by a plate reader (Titertek Multiskan, Eflab, Finland). The number of cells was shown as absorbance units.

## 2.9. Statistical analysis

The results were assessed using non-paired (two-sided) Student's *t*-test. PIGF transcript values obtained in the study are given as mean copy number  $\pm$ SD. A *P*-value <0.05 was defined as statistically significant.

#### 3. Results

## 3.1. Screening of human cell lines for PlGF

A variety of 24 human normal and cancer cell lines were examined for PIGF expression through RT-PCR (Fig. 1 and Table 2). PIGF was expressed in the large majority of the human cancer cell lines examined. However, only 4 of the 9 breast cancer cell lines examined (numbers 1–9 in Fig. 1) revealed any detectable level of PIGF transcripts. These breast cancer cell lines displayed weak to moderate levels of PIGF. Of the remaining human cancer cell lines, PIGF was found to be strongly expressed in the prostate (numbers 10–12), colorectal (numbers 13 and 14), bladder (numbers 18 and 19) and melanoma (number 21). Human fibroblasts (numbers 15 and 16) revealed little or no detectable levels of PIGF. The normal epithelial and endothelial cell lines expressed a moderate to low level of PIGF.

# 3.2. Expression of PIGF in paired breast specimens (normal versus cancer)

We also performed conventional RT-PCR on a panel of paired breast tissues (n, normal; t, tumour). Both normal breast tissue and breast cancer tissue were found to express PIGF mRNA, albeit at minimal levels in normal breast specimens. Overall, PIGF mRNA was expressed to a higher degree in the breast cancer samples when compared with normal breast tissue (Fig. 2).

# 3.3. Immunohistochemical staining of human breast specimens

PIGF immunostaining was observed in the human breast tissue sections. We reveal that the PIGF protein level was dramatically elevated in the breast tumour specimens compared with the normal breast tissue.

Table 2 Summary of qualitative PIGF expression

| No. | Cell line        | Origin            | PlGF |
|-----|------------------|-------------------|------|
| 1   | MDA-MB-157       | Breast cancer     | a    |
| 2   | MDA-MB-231       | Breast cancer     | b    |
| 3   | MDA-MB-436       | Breast cancer     | a    |
| 4   | MDA-MB-453       | Breast cancer     | _    |
| 5   | MDA-MB-43S5      | Breast cancer     | b    |
| 6   | BT474            | Breast cancer     | _    |
| 7   | BT549            | Breast cancer     | _    |
| 8   | MCF 7            | Breast cancer     | _    |
| 9   | ZR-75-1          | Breast cancer     | _    |
| 10  | PC-3             | Prostate cancer   | c    |
| 11  | DU-145           | Prostate cancer   | c    |
| 12  | CA-HPV-10        | Prostate cancer   | b    |
| 13  | HT-115           | Colorectal cancer | b    |
| 14  | HRT-18           | Colorectal cancer | b    |
| 15  | MRC5             | Fibroblast        | _    |
| 16  | Human fibroblast | Fibroblast        | a    |
| 17  | MIA-PACA-2       | Pancreatic cancer | b    |
| 18  | EJ-138           | Bladder cancer    | b    |
| 19  | T-24             | Bladder cancer    | c    |
| 20  | A-549            | Lung cancer       | b    |
| 21  | G-361            | Melanoma          | c    |
| 22  | PLC-PRF-5        | Liver cancer      | b    |
| 23  | ECV-304          | Epithelial        | b    |
| 24  | HECV             | Endothelial       | a    |

<sup>-,</sup> not detected.

<sup>&</sup>lt;sup>c</sup> Strong expression.



Fig. 2. Reverse transcriptase polymerase chain reaction (RT-PCR) on a panel of paired breast tissues (*n*, normal; *t*, tumour). PIGF expression was found to be expressed to a higher degree in the tumour specimens compared with the paired background breast tissue specimen. PIGF expression in normal breast tissue was minimal.

The patients' tumour tissues displayed a more intense and widespread level of staining in the breast cancer cells compared with the very weak staining of epithelial cells in the normal breast tissue (Fig. 3). These results confirm our RT-PCR and Q-PCR data in showing that breast cancer tissues have significantly enhanced PlGF levels.

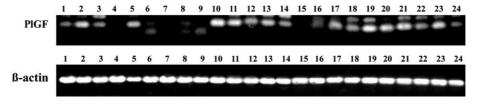



Fig. 1. Reverse transcriptase polymerase chain reaction (RT-PCR) expression of PIGF in 24 human cell lines expression. PIGF was expressed by a large majority of the human cancer cell lines examined. *Note:* additional larger sized bands were sequenced and found to be non-specific.

<sup>&</sup>lt;sup>a</sup> Weak expression.

<sup>&</sup>lt;sup>b</sup> Moderate expression.

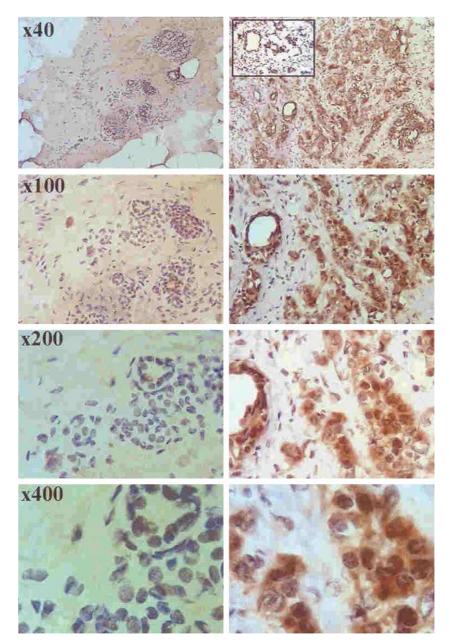



Fig. 3. Immunohistochemical staining of human breast specimens. Normal background breast tissue (left panels) *versus* breast cancer tissue (right panels) from breast cancer patients. Breast cancer tissues were also stained in the absence of a PIGF primary antibody to act as a negative control (insert in top right plate). These sections demonstrate that the PIGF is expressed at far higher levels in the breast tumour specimens compared with the normal breast tissue. The breast tumour specimens displayed a high and widespread level of PIGF staining that was far more intense in the breast carcinoma cells, compared with the low/absent levels of PIGF in the epithelial cells and fibroblasts of normal background breast tissue.

# 3.4. Quantification of PIGF expression in human breast tissues

We quantified the PIGF transcript expression in the breast specimens (tumour n=119, background n=33) using real-time Q-PCR (all Q-PCR values are displayed as mean transcript copies). We show that the PIGF expression value in tumours was  $0.665 \pm 0.35$ , compared with  $0.03 \pm 0.017$  in the normal tissue. Therefore, our results reveal that the breast cancer tissues express sig-

nificantly higher levels of PIGF (P = 0.028), compared with the low levels observed in the normal background breast tissues (Fig. 4(A)).

# 3.5. PlGF expression in relation to prognosis

We examined the PIGF level between the Nottingham Prognostic Index (NPI) groups of breast cancer patients (NPI-1, n = 67; NPI-2, n = 37; NPI-3, n = 15). The NPI-1 group represented patients with a good prognosis and

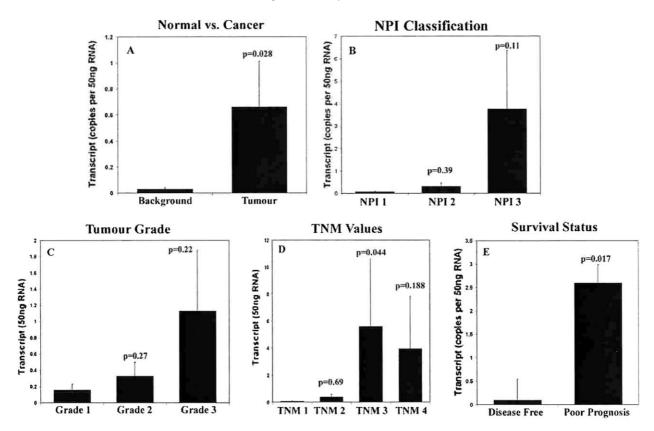



Fig. 4. Quantitative-PCR analysis of PIGF expression in human breast cancer tissues (A–E). (A) PIGF expression is significantly elevated in human breast cancer tissues compared with normal background breast tissue (P = 0.028). (B) Patients with some degree of node involvement have a higher level of PIGF expressed in the tumours, compared with the tumour of patients without any node involvement, although, these values did not reach significance (C) Levels of PIGF appeared to correlate with poor differentiation. The lowest levels of PIGF were observed in the well-differentiated grade 1 tumours, although these values did not reach statistical significance. (D) Comparison of PIGF expression between the TNM classification groups revealed that PIGF was expressed to significantly higher levels (P = 0.044) in patients with an overall poor outlook (TNM 3) compared with those with good outlook (TNM 1). (E) Patients who were alive and well with no recurrence were allocated to the good prognosis group, whereas, those who had recurrence, metastasis to distant areas or had died as a result of breast cancer were allocated to the poor prognosis group. Patients with a poor prognosis had dramatically elevated levels of PIGF (P = 0.017).

an NPI index <3.4, the NPI-2 group contained patients with a moderate prognosis and an NPI index of 3.4-5.4, whereas the NPI-3 patients had a poor prognosis with an NPI index of >5.4. An increased degree of lymph node involvement was associated with increasing levels of PIGF (Fig. 4(B)). The patients assigned to the NPI-1 group had a PIGF transcript value of  $0.085 \pm 0.028$ , compared with the NPI-2 group with  $0.312 \pm 0.171$ and NPI-3 with 3.76  $\pm$  2.68. A Kruskal–Wallis test has shown that there is a significant association between increased levels of PIGF transcript and high NPI status (P = 0.022). Overall, patients with node involvement had raised levels of PIGF compared with those without any degree of node involvement. However, this correlation between PIGF and prognosis did not reach statistical significance in these instances (P = 0.13).

#### 3.6. PlGF and breast tumour grade

PIGF values in the moderate grade 2 (0.33  $\pm$  0.171, n = 41) and poorly differentiated and grade 3 (1.13  $\pm$ 

0.75, n = 55) tumours were elevated compared with well-differentiated grade-1 tumours  $(0.16 \pm 0.02, n = 23)$ . This trend linking PIGF to a poor patient outlook did not reach statistical significance with the current sample number (grade 1 *versus* grade 2, P = 0.27; grade 1 *versus* grade 3, P = 0.22) (Fig. 4(C)). Additionally, we examined PIGF expression within the different tumour histological subtypes, although there was no apparent difference between the lobular, ductal or other tumour types. However, Kaplan–Meier survival analysis identified PIGF as a disease-free survival factor in oestrogen receptor (ER) negative tumours (P = 0.013).

# 3.7. Tumour-node-metastasis classification of patients

PIGF expression correlated with patient outlook through tumour-node-metastasis (TNM) grouping (TNM 1, n = 68; TNM 2, n = 39; TNM 3, n = 8; TNM 4, n = 4). Levels of PIGF were found to be significantly elevated in tumours of patients who had an overall poor outlook (TNM 3,  $5.57 \pm 5.47$ ; TNM 4,

 $3.96 \pm 3.91$ ), compared with those patients with a relatively good prognosis (TNM 1,  $0.084 \pm 0.025$ ; TNM 2,  $0.41 \pm 0.19$ ). We reveal that PIGF was expressed to significantly higher degree (P = 0.044) in patients with an overall poor outlook (TNM 3) compared with those with a good outlook (TNM 1) (Fig. 4(D)).

# 3.8. PIGF expression and survival status

We assessed the survival status of the breast cancer patients in association with PIGF levels, with an average of a 6-year follow-up period (Fig. 4(E)). Patients were divided into two groups, those who remained disease-free were assigned to the good prognosis group (n=89), whereas, the patients who had recurrence, metastasis to a distant site or had died as a result of breast cancer were allocated to the poor prognosis group (n=30). The quantity of PIGF from each tumour specimen was assessed and we reveal that the patients with a poor prognosis had dramatically elevated levels of PIGF (P=0.017). Our results show that the good prognosis group had low levels of PIGF  $(0.099 \pm 0.042)$  compared with the statistically higher levels observed in the poor prognosis group  $(2.6 \pm 1.51)$ .

# 3.9. PIGF did not significantly enhance endothelial cell migration

The cell motility assay utilised time-lapsed video monitoring to provide quantitative data on PIGF's ability to enhance HECV cell migration. The mean distance

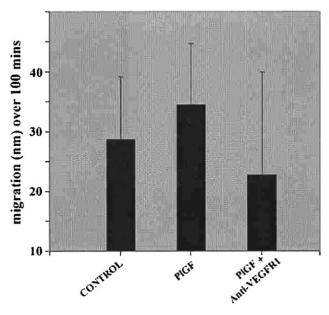



Fig. 5. Endothelial motility assay. This assay assessed the motile properties of HUVEC cells in the presence anti-VEGFR-1 (120 ng/ml) and/or PIGF (30 ng/ml). No significant differences in endothelial cell motility were observed in the presence of PIGF.

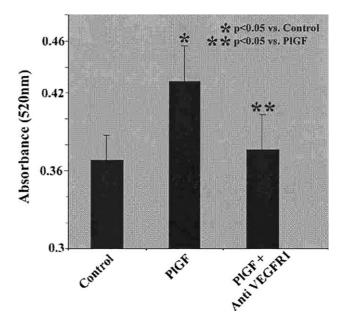



Fig. 6. Endothelial proliferation assay. Over a 72-h incubation period, there was a significant increase in the rate of proliferation (P = 0.036) in the HUVEC cells treated with recombinant PIGF (30 ng/ml) compared with the control HUVEC cells. This enhanced proliferation was significantly suppressed (P = 0.027) through the addition of an antibody against VEGFR-1 (120 ng/ml).

moved for the cells over 100 min was determined for each treatment. The addition of PIGF slightly increased the degree of endothelial cell migration; however, these results did not reach significance. Therefore, no significant differences in cell motility were observed with recombinant PIGF treatment (Fig. 5).

### 3.10. PIGF increased human endothelial cell proliferation

The proliferation assay examined the effect of PIGF on the proliferation rate of HECV cells (Fig. 6). The results showed that, over a 72-h period, there was a significant increase in the rate of proliferation in the endothelial cells cultured in PIGF compared with the control (P=0.036). PIGF exerts its influence through its interaction with the VEGFR-1 receptor, however, when PIGF was added in combination with an antibody to VEGFR-1, the influence of PIGF was significantly inhibited (P=0.027). We confirm that PIGF plays a role in human endothelial cell proliferation, via VEGFR-1 signalling pathways.

# 4. Discussion

PIGF plays a putative role in tumour angiogenesis. Studies report that PIGF stimulates formation of mature, leakage-resistant vessels in a manner comparable in efficiency to VEGF [34,35]. However, it was recently discovered that PIGF switches on its own genetic

program of angiogenic genes, separate to that of VEGF [13]. Recent studies in mice revealed that loss of PIGF impaired tumour angiogenesis, while an over-expression enhanced vascularisation and vessel permeability [35,36]. PIGF, and its receptor VEGFR-1 (FIt-1), while being minimally expressed in quiescent vessels, are strongly upregulated in a variety of pathological conditions [37]. Therefore, PIGF does appear to enhance tumour angiogenesis, although there are contrasting views whether this factor influences physiological angiogenesis. Our study is the first to quantitate PIGF expression in human breast tissue samples from breast cancer patients. This study also assessed PIGF levels in relation to patient clinical parameters.

PIGF is not expressed in the majority of normal adult human tissues, and we confirm that PIGF was absent or at very low levels in the normal breast tissue from breast cancer patients. Screening a panel of 24 human cells lines revealed that PIGF was expressed in a large variety of human cancer cell lines, including breast, colorectal, bladder and prostate. This study demonstrates that PIGF was strongly expressed in the tumour tissue of the breast cancer patient specimens, and that a high degree of expression was indicative of a poor prognosis for the patient. We confirmed that PIGF was dramatically upregulated in the patients' breast cancer tissue compared with the minimal levels observed within normal breast tissues via immunohistochemical staining, and both qualitative and quantitative PCR. Interestingly, a recent study also demonstrates that PIGF was overexpressed in nearly 90% of gastric cancers compared with non-tumour mucosa, and this expression correlated with patient clinical outcome, whereas VEGF did not [22]. Therefore, PIGF demonstrates strong prognostic potential. We also assessed the function PIGF in a series of in vitro assays and report that addition of recombinant PIGF enhanced endothelial cell proliferation through its interaction with VEGFR-1 (Flt-1); however, PIGF did not significantly enhance endothelial cell migration or tubule formation in a 3-D culture system. Lack of significant results may be due to the fact that the endothelial cells themselves produce abundant levels of PIGF in culture, which reduces their sensitivity to exogenous PlGF.

Our study demonstrates that PIGF expression correlates with breast cancer patient prognosis, as high levels of PIGF were significantly associated with a higher degree of lymph node involvement, poorly differentiated tumours and an overall poor outlook for the patient. Therefore, we show that PIGF may exercise its role only at specific fragments of the cancer progression pathway, such as the later stages of the disease, and that PIGF may also act in tumour specific manner. Following radio-immunotherapy, surviving tumour cells upregulate the expression of specific angiogenic factors depending on the type of tumour, and PIGF was shown to

increase microvessel density but decrease the number of mature vessels [38,39]. Therefore, it has been suggested that PIGF may play a role in the rapid restoration of a tumour blood supply after treatment, thus may enhance the possibly of recurrence. Tumour angiogenesis is a complex process; therefore the reported responses from PIGF/VEGR-1 signalling will make PIGF a desirable potential therapeutic target. We conclude that PIGF is over-expressed in human breast cancer tissues and displays prognostic value in breast cancer patients.

#### Conflict of interest

None declared.

### Acknowledgement

We thank the Breast Cancer Campaign for supporting this work.

#### References

- 1. Hanahan D, Weinberg RA. The hallmarks of cancer. *Cell* 2000, **100**, 57–70.
- Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. *Cell* 1996, 86, 353–364.
- 3. Ferrara N. VEGF and the quest for tumour angiogenesis factors. *Nat Rev Cancer* 2002, **2**, 795–803.
- Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002, 20, 4368-4380
- Plate KH, Breier G, Weich HA, et al. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 1992, 359, 845–848.
- Berse B, Brown LF, Van de Water L, et al. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 1992, 3, 211–220.
- Zhang HT, Craft P, Scott PA, et al. Enhancement of tumor growth and vascular density by transfection of vascular endothelial cell growth factor into MCF-7 human breast carcinoma cell. J Natl Cancer Inst 1995, 87, 213–219.
- Maeda K, Chung YS, Ogawa Y, et al. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 1996, 77, 858–863.
- Linderholm B, Tavelin B, Grankvist K, et al. Vascular endothelial growth factor is of high prognostic value in node negative breast carcinoma. J Clin Oncol 1998, 16, 3121–3128.
- Gasparani G, Toi M, Gion M. Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 1997, 89, 139–147.
- Maglione D, Guerriero V, Viglietto G, et al. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 1991, 88, 9267–9271.
- Cao Y, Weidong RJ, Pang Q, et al. Placenta growth factor: identification and characterization of a novel isoform generated by RNA alternative splicing. Biochem Biophys Res Commun 1997, 235, 493–498.

- Autiero M, Waltenberger J, Communi D, et al. Role of PIGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003, 9, 936–943.
- Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001, 7, 575–583.
- Luttun A, Autiero M, Tjwa M, et al. Genetic dissection of tumor angiogenesis: are PIGF and VEGFR-1 novel anti-cancer targets? Biochim Biophys Acta 2004, 1654, 79–94.
- Hauser S, Weich HA. A heparin-binding form of placenta growth factor (PIGF-2) is expressed in human umbilical vein endothelial cells and in placenta. *Growth Factors* 1993, 9, 259–268.
- 17. Vuorela P, Hatva E, Lymboussaki A. Expression of vascular endothelial growth factor and placenta growth factor in human placenta. *Biol Reprod* 1997, **56**, 489–494.
- Rakic JM, Lambert V, Devy L, et al. Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Ophthalmol Vis Sci 2003, 44, 3186–3193.
- Khaliq A, Foreman D, Ahmed A, et al. Increased expression of placenta growth factor in proliferative diabetic retinopathy. Lab Invest 1998, 78, 109–116.
- Li XF, Charnock-Jones DS, Zhang E, et al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J Clin Endocrinol Metab 2001, 86, 1823–1834.
- 21. Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. *Arch Oral Biol* 2000, **45**, 1013–1016.
- 22. Chen CN, Hsieh FJ, Cheng YM, et al. The significance of placenta growth factor in angiogenesis and clinical outcome of human gastric cancer. Cancer Lett 2004, 213, 73–82.
- Matsumoto K, Suzuki K, Koike H, et al. Prognostic significance of plasma placental growth factor levels in renal cell cancer: an association with clinical characteristics and vascular endothelial growth factor levels. Anticancer Res 2003, 23, 4953–4958.
- Donnini S, Machein MR, Plate KH, et al. Expression and localization of placenta growth factor and PIGF receptors in human meningiomas. J Pathol 1999, 189, 66–71.
- Lacal PM, Failla CM, Pagani E, et al. Human melanoma cells secrete and respond to placenta growth factor and vascular endothelial growth factor. J Invest Dermatol 2000, 115, 1000–1007
- Nomura M, Yamagishi S, Harada S, et al. Placenta growth factor (PIGF) mRNA expression in brain tumors. J Neurooncol 1998, 4, 123–130

- Takahashi A, Sasaki H, Kim SJ, et al. Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res 1994, 54, 4233–4237.
- Kodama J, Seki N, Tokumo K, et al. Placenta growth factor is abundantly expressed in human cervical squamous cell carcinoma. Eur J Gynaecol Oncol 1997, 18, 508–510.
- Viglietto G, Maglione D, Rambaldi M, et al. Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (PIGF) associated with malignancy in human thyroid tumors and cell lines. Oncogene 1995, 11, 1569–1579.
- Parr C, Watkins G, Mansel RE, et al. The hepatocyte growth factor regulatory factors and human breast cancer. Clin Cancer Res 2004, 10, 202–211.
- 31. Jiang WG, Douglas-Jones A, Mansel RE. Level of expression of PPAR-gamma and its co-activator (PPAR-GCA) in human breast cancer. *Int J Cancer* 2003, **106**, 752–757.
- Jiang WG, Hiscox S, Parr C, et al. Antagonistic effects of NK4, a novel HGF variant, on the *in vitro* angiogenesis of human vascular endothelial cells. Clin Cancer Res 1999, 5, 3695–3703.
- 33. Cai J, Ahmad S, Jiang WG, et al. Activation of vascular endothelial growth factor receptor-1 sustains angiogenesis and Bcl-2 expression via the phosphatidylinositol 3-kinase pathway in endothelial cells. *Diabetes* 2003, 52, 2959–2968.
- Luttun A, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PIGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002, 8, 831–840.
- 35. Carmeliet P. VEGF gene therapy: stimulating angiogenesis or angioma-genesis. *Nat Med* 2001, **6**, 1102–1103.
- Odorisio T, Schietroma C, Zaccaria ML, et al. Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability. J Cell Sci 2002, 115, 2559–2567.
- 37. Luttun A, Autiero M, Tjwa M, *et al.* Genetic dissection of tumor angiogenesis: are PIGF and VEGFR-1 novel anti-cancer targets. *Biochim Biophys Acta* 2004, **1654**, 79–94.
- Taylor AP, Osorio L, Craig R, et al. Tumor-specific regulation of angiogenic growth factors and their receptors during recovery from cytotoxic therapy. Clin Cancer Res 2002, 8, 1213–1222.
- Taylor AP, Rodriguez M, Adams K, et al. Altered tumor vessel maturation and proliferation in placenta growth factor-producing tumors: potential relationship to post-therapy tumor angiogenesis and recurrence. *Int J Cancer* 2003, 105, 158–164.